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MAXIMUM ENTROPY BEAM DIAGNOS1lC 10MOGRAPHY*

C. T. Mottershead, Al-6, MS H829t
Los Alamos National Laboratory, Los Alamos, NM 87545

Sunsnary

This paper reviews the formalism of ,,axlmum en-
tropy beam diagnostic tomography as applled to the
Fusion Mcterlals Irradiation Test (FM1l) prototvpe
accelerator. The same formalism has also been used
with streak camera data to produce an ultrahigh speed
movie of the beam profile of the Experimental Test
Acceler~tor (EIA) at Livermore.

Introduction

Intense particle beams require nonintercepttve
diagnostics. One of these is the light emitted from
Interaction of the beam with residual gas. If the
light is produced by a first-order process linear In
the beam density, Its profile measured across the beam
may be Interpreted as a tomographic projection of
that density dlstrlbutton. i-d With a small number of
such projections, and appropriate transfer matrices
connecting them, ktlnerbo’ss~c maximum entropy algo-
rithm may be used to construct an estimate of the beam
density distribution In both coordinate and phase
soace. The objective of this paper Is to provide a
concise review of this formalism and some of its aD-
pllcations

The p
system (x,
t~on. The
dlmensiona
of the heal

to accelerator diagnostics.

Formulation of Pro~m

oblem Is defined in a Cartesian coordinate
y, z) with the z axis in the beam dlrec
quantities being sought are the two-
functions f(x,y), representing the density
In tne Diane z = O. or the ohase-soace

density distribution f(x,x’) where x’ =“dx/dz {s the
slope ot the trajectory and Is proportional to the
transverse momentum.

The observed data Is a set of N different projec-
tion integrals, def~ned by

pn(S) = frn f(xn(s,t), yn(s,t)) dt ,
-a

(1)
n ~ 1, 2, ... N .

Lath projection Is spec~fied by a different pair of
coordinate transformation functions

x = Xn(s, t) and Y r Yn(s,t) (2)

that g{ve the mapping between the (x,y) plane and the
(s,t) plane with s the projection sample coordinate,
and t the transverse integration coordinate, Each
projection Integral ptovldes a different “view” of the
same (unknown) function f(x,y), This concept is eas-
ily vt;ualized in the case of spac{al reconstruction,
where the views are taken at different anqles about
the beam axis (see Fig, 1). The
formed coordinates are then spec
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fled by a simple

()[
5 Cos en

]()
sln e ‘

n
x

m
t ill en cus e

rl Y
,

from which we obtain

..— ...——._ .-— . .
‘Work supported by the US Department of Energy,
tMostof this work was performed while the author
was at EG&G, Los Alamos,

(3)

t’

‘i
TOM313RAPMIC
PROJECTION

\
/ I /

Fig. 1. The geom
etry of tomo-
graphic projec
tlon for spatial
reconstruction
(+ signs).
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xrl(s,t) = s cos on - t sin on and
(4)

Yn(s,t) = s sin en + t cos en .

For the emittance (pha-e -space) reconstruction,
observations are taken from a series of stations at
different z-coordinates down the beamlin?. The pro-
jection sample coordinate at the nth station Is just
s = x, the spaclal coordinate across the beam. The
coordinate being integrated over Is the trajectory
slope t = x’,

We assume these (s,t) coordinates for the nth
station are related to the (x,x’) coordinates In the
reconstruction plane at z ,-0, by an arbitrary linear
transport n,atrix An:

(5)

The Jacobian of the transformation is Jn z ~etlAni
= andn - bncn. Because Jn Is the area of the (s,t)
plane corresponding to a unit area In the (x,x’)
plan~, it specifies the emlttance change between z - 0
and station n (z = Zn). From the inverse matrix, we
obtain in generisl

X = xn($,t) * (dns - bnt)/Jn and
(b)

x’ = ;n(s,t) * (art - ens)/Jn ,

Note that the s a,js maps into a llne through the
origin with slope -cn/dn. The Integration dlrect{on
for the nth vtew is parallel to the Image of the
taxis, namely, a family of llnes with slcpe a /bn.
The simplest example is a linear drtft for whlc II
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(7)

In thls”case, the’s-axis maps onto the x.axis, while
the t-axis p~ojectlon Integration lines have a slope
‘1/Zn. Not& agatn that we are treating each observed
projection as a view In a dtfferent coordinate system
of the some, fixed, phase-space distrlbutton function
f(x,x’), But in the (x,x’) plane, the projection and
sample axes for the other views ~re tn ger]eral not or-
thogonal. Thi$ lrrterpretatlon Is In contrest to th?
more usual one of the dlstrlbutlon funct!cm executing
a kind of generisltzed rotation and distortion, III

local (x,x’) coordinates, as t.hc particles move down
thv beaml!nc,
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The Maximum Entrocw Princlgle

The FMIT prototype accelerator at L6s Alamos is
equipped with etght data-collecting stations capable
of measuring such projections (three using mirrors and
TV cameras, the rest using fiber optics and Retlcon
linear arrays. Given a set of projection data of the
type described by Eq. (l), we would llke to invert it
to find f(x,y) or f(x,x’). If, in the rGtation case,
we knew the projection as a continuous function of an-
gle, the Radon transform would give a unique inverse.
In medical tomoqrapby, hundreds of data views are
taken to approximate this result. For accelerator
applications, however, we can have only a few views,
usually 3 or 4. In this czse the inversion is not
unique, and we neeri a Imechanism for constructing an
estimate of f(x,y) that incorporates everything we
know, and nothing else. The maximum entropy principle
offers a natural way for doing this. ~-s It argues
that, of al? the possible distribution functions
f(x,y) that satisfy the observed constraints
[Eq. (1)], the most reasonable one to choose is that
one that nature can produce in the greatest number of
ways, namely, the dlstribut!on having maximum entropy,

The entropy of a distribution f(x,y) may be de-
ftned as

The 14dxtmum Entropv Solution

The method of Lagrange m~ltipliers is used to
maximize the entropy of Eq. (8) subject to the con-
straints of Eq. (l). Form the Lagranglan functional

q(f,k) = H(f) +

N
~ j ds An(S) [j dt f(xn, yn) - pn($)] , (11)

n=l

and demand that it be stationary with respect to var-
iations in both the unknown tplo-dimensional function
f(x,y) and the N unknown one-dimensional Lagrange mul-
tiplier functions An(s). By construction, the condi-
tion @ = O under the variation An(s) + An(s) + &kn(s),
for arbitrary 6kn($), only reproduces the constraint
Eqs. (l). What remains is to dema~d &$ = O under the
variation f(x,y) + f(x,y) + Af(x,y), for arbitrary
Af(x,y), The variation in the entropy term is
irmnediately

AH = - jr dxdy [1 + in f (x,y)]Af(x,y) . (12)

To collect the coefficients of Af(x,y) from the summa
tion term is a bit more difficult. It requires the
observation that each of the double integrals on s and
t is over the erltire plane, and can be transformed
back to the (x,y) coordinate system through the in
verses of the N different mappinys specified by
Ect. (2). For the nth maD9in~. we denote bv Sn(x,y)

H(f) = -J1 dxdy f(x,y) in f(x,y) . (8)

This formula is the unique measure of the multiplicity
of the microstates consistent with a given distribu-
tion, It may be derived from the functional equations
expressing the logic of combining probabilities, or
from a direct counting of the number of independent
ways of distributing N particles over M cells of phase
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wher(! ni is the rrumber ot par~icles
If we set nt = Nfl, so that fi I= the
ticle~ in the ith cell, and use Stir
tion, neglecting terms of order l/N,

H
l/NlnW~-~filnfi ,

i=l

n tne ith cell.
fraction of par
ing’s approxirrm
we get

hese coordinate
sum term may be

on

n;, ~1 ~n(sn(x,Y)) Af(x,y) JndY(iy , (14)

(lo)

where Jn is the Jacobian of the transformation, a ron
stant fo- thp linear transformations considered here.
For the rot?,tional case, Jn is always unity, whereas
for the ph?,se-space reconstruction, Jn gives the
change in emittance (phdse-space area scale) between
the recor,struct!on plane and the nth data station,
Norman\, ,111- 1 In this case also, The terms involv
ing thr data pn(s) may be ignored because they do noi
depenr, orl f,

which is the discrete arlalog of Lq. (8).
Equation (10) implies that an N particle distri

bution with entropy H corresponds to a multiplicity
W - exp NH, This means that, if the a priori proba
billty of a given distribution Is proportional to the
number of ways it cdn be produced (tl}at is, its multi-
plicity), nature Strongl!j favors the maximum entropy
distribution, in the sense that a unit increase in
entropy corresponds to a factor of eN in multiplicity,

Therefore, of all the distributions thal satitfy
our data constr~ints [Eq, (l)], we wart the one having
maximum entropy, as defined by kq. (8), Its construe
tion is a straightforward variational ca’rulus prob
lem outlined in the next section, Its l}a7.uremay b?
surmtsed by noting that the unconstrairled maximization
of entropy always leads to the uniform distribution
fl - l/M. For the constrained problem then, the d~s
tributtons of lesser entropy ~re presumably not as
smooth as the favored one, and contain various oscil
latory terms that integrate to zero in the directions
of obsorvatlon, leavtng no evidence in the projection
date,

tie may now collect all the coefficients of
y)l from Eqs, (12) and (14) to find the conditionbf(x

t4dt

In f

v be stationary under variations in f:

N
(1!))

l,= I

Becausr
An(s) a
rpplarp
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the me:
pro.lilct

at this poinl, the Lagrange multiplie $
0 still unknown, it is convenient to
thwn by equiillf~unknown “Lagrange fac ors”
@xp(JnAn(s) I/N) in terms of winch
mum entropy dlstributl’~n takes on a s mplo
form



N
f(x, y) = fl hn[sn(x, y)] . (lb)

n=l

Substitution of this form into the constraint tq. (l),
results in a set of N simultaneous nOnlinear equations
for the N unknrwn one dimensional functions fin(s).
MinerboS first noted the remarkable fact that, at
least for linear transformations, hn(s) always factors
out of Its own constraint ,ntegral

Pn(s) = hrl(s) ~ dt ~~n hk[sk(”n.yn)] . (17)

He was therefore able in hts MENT algorithm to use a
very fast Gauss-Seidel Iteration technique to solve
for the hn(s). A modified solver has since been
written by the author to improve the stability of the
algorlthm in the presence of noise.

In surmnary then, the maximum entropy distribution
is favored as the one most easily produced by nature,
and its form is always a simple product of Lagrange
factors hn(s), one for each vied, The arguments of
the one-dimenslona”l functions hn(s) are completely
specified by the geometry, and their shape is adjusted
to make the projections of the two-dimensional product
function agree with the given data, The simplicity
and generality of this result make it useful for many
purposes, including nonlnterceptive beam diagnostics.

In the FMI1 system at Los Alamos, this f4ENl algo-
rithm Is running as part of an Integrated software
system on an LSI 11/23 mounted in the same diagnostic
node where the data Is recorded. The solution usually
converges In about 5 iterations, each of which t~kes
a few seconds In the typicai case of 3 or 4 views of
25 samples each, Figure 2 shows normalized projection
data (+ signs) and the reprojected solution at 3 loca-
tions on the FMII beam line. Figures 3 and 4 show
contour and isometric plots of this emittance
d?stributlon,

}ig, 2, Three vtews of profile dt?ta and maximum
entropy fit,

Stretik tomography 1s another application of this
algorithm in which th~ time dependence of the instan
taneous optical projection Is recorded by a streak
camera. io The streak Image is raster scanned, and
this algorithm IS used to construct a two-dlmenstonal
framp of an output mov!e from the projection data
stored in each scan line, in an experiment at Ltver
more, three vtews of the cross section of the electron
beam pulse in the tlA were r~corded with a streak cam
era.i’ The resulting time sllce profiles were proc
ess~,’ It EG&G, Los Alamos, Into a 700 frame video
mov , tepre~entlnq 4? ns of real time, thus demon
str~tlng the feasibility of the techrique,
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fig. 3. Isometric display
of maximum entropy solu-
tion for phase-space dis-
tribution function.
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Fig. 4. Contour plot of maximum entropy solhtion for
phase-space distribution function.
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